rff
Functions:
Name | Description |
---|---|
aggregate_rff_weights |
Wrapper function for |
clean_error |
Clean the weights csvs generated by the RFF emulator. |
clean_simulation |
Clean the weights csvs generated by the RFF emulator. |
prep_rff_socioeconomics |
Generate the global or domestic RFF socioeconomics file for use with the |
process_rff_sample |
Clean raw socioeconomic projections from a single RFF-SP simulation run, |
process_ssp_sample |
Clean SSP per capita GDP projections |
rff_damage_functions |
Wrapper function for |
solve_optimization |
Generate weights based on which to derive the weighted average of damage function coefficents |
weight_df |
Weight, fractionalize, and combine SSP damage functions, |
dscim.utils.rff.aggregate_rff_weights
aggregate_rff_weights(root, output)
Wrapper function for clean_simulation()
and clean_error()
.
Generates an aggregated file of RFF emulator weights.
Source code in src/dscim/utils/rff.py
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
|
dscim.utils.rff.clean_error
clean_error(draw, root)
Clean the weights csvs generated by the RFF emulator. This produces a file of the errors (for diagnostics).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
draw
|
int, weight draw
|
|
required |
root
|
str, root directory
|
|
required |
Source code in src/dscim/utils/rff.py
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
|
dscim.utils.rff.clean_simulation
clean_simulation(draw, root)
Clean the weights csvs generated by the RFF emulator. This produces a file of the weights.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
draw
|
int, weight draw
|
|
required |
root
|
str, root directory
|
|
required |
Source code in src/dscim/utils/rff.py
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
|
dscim.utils.rff.prep_rff_socioeconomics
prep_rff_socioeconomics(inflation_path, rff_path, runid_path, out_path, USA)
Generate the global or domestic RFF socioeconomics file for use with the dscim
MainRecipe.
Source code in src/dscim/utils/rff.py
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
|
dscim.utils.rff.process_rff_sample
process_rff_sample(i, rffpath, ssp_df, outdir, HEADER, **storage_options)
Clean raw socioeconomic projections from a single RFF-SP simulation run,
pass the cleaned dataset to the solve_optimization
function, and save outputs
This produces a csv file of RFF emulator weights and country-level errors in 5-year
increments for a single RFF-SP
Source code in src/dscim/utils/rff.py
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
|
dscim.utils.rff.process_ssp_sample
process_ssp_sample(ssppath)
Clean SSP per capita GDP projections
Source code in src/dscim/utils/rff.py
158 159 160 161 162 163 164 165 166 167 168 |
|
dscim.utils.rff.rff_damage_functions
rff_damage_functions(sectors, eta_rhos, USA, ssp_gdp, rff_gdp, recipes_discs, in_library, out_library, runid_path, weights_path, pulse_year, mask)
Wrapper function for weight_df()
.
Source code in src/dscim/utils/rff.py
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
|
dscim.utils.rff.solve_optimization
solve_optimization(ssp_df, rff_df)
Generate weights based on which to derive the weighted average of damage function coefficents across six SSP-growth models for a single RFF-SP This function applies an emulation scheme to calculate a set of weights, constrained to sum to unity, that, when used to take a weighted average of global GDP across SSP-growth models (3 SSPs X 2 IAMs), most closely recovers the global GDP in the RFF-SP simulation run that wish to emulate. The emulation scheme is estimated and applied separately for each 5-year period, of a single RFF-SP. Within each period, the scheme aims to interpolate between the SSP-growth models in order to match the country-level GDPs designated by the given RFF-SP. Empirically, it solves an optimization problem to minimize a weighted sum of country-level errors, taking country-level RFF-SP GDPs as weights
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ssp_df
|
DataFrame
|
Dataset with country-level log per capita GDPs by SSP-growth models in 5-year increments, post-
processed by the |
required |
rff_df
|
DataFrame
|
Dateset with country-level GDPs and log per capita GDPs for a single RFF-SP simulation run |
required |
Returns:
Type | Description |
---|---|
Dataset with a set of SSP-growth model weights and country-level errors in 5-year increments
|
for a single RFF-SP |
Source code in src/dscim/utils/rff.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
dscim.utils.rff.weight_df
weight_df(sector, eta_rho, recipe, disc, file, in_library, out_library, rff_gdp, ssp_gdp, weights, factors, pulse_year, fractional=False, mask='unmasked')
Weight, fractionalize, and combine SSP damage functions, then multiply by RFF GDP to return RFF damage functions.
Source code in src/dscim/utils/rff.py
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
|