Skip to content

rff

Functions:

Name Description
aggregate_rff_weights

Wrapper function for clean_simulation() and clean_error().

clean_error

Clean the weights csvs generated by the RFF emulator.

clean_simulation

Clean the weights csvs generated by the RFF emulator.

prep_rff_socioeconomics

Generate the global or domestic RFF socioeconomics file for use with the dscim MainRecipe.

process_rff_sample

Clean raw socioeconomic projections from a single RFF-SP simulation run,

process_ssp_sample

Clean SSP per capita GDP projections

rff_damage_functions

Wrapper function for weight_df().

solve_optimization

Generate weights based on which to derive the weighted average of damage function coefficents

weight_df

Weight, fractionalize, and combine SSP damage functions,

dscim.utils.rff.aggregate_rff_weights

aggregate_rff_weights(root, output)

Wrapper function for clean_simulation() and clean_error(). Generates an aggregated file of RFF emulator weights.

Source code in src/dscim/utils/rff.py
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
def aggregate_rff_weights(
    root,
    output,
):
    """Wrapper function for `clean_simulation()` and `clean_error()`.
    Generates an aggregated file of RFF emulator weights.
    """

    # clean simulation files
    datasets = p_map(partial(clean_simulation, root=root), range(1, 10001, 1))

    # concatenate and interpolate
    concatenated = xr.concat(datasets, "rff_sp").interp(
        {"year": range(2010, 2101, 1)}, method="linear"
    )

    # reweight
    reweighted = concatenated / concatenated.sum(["model", "ssp"])

    # make sure weights sum to 1
    assert_allclose(reweighted.sum(["model", "ssp"]).values, 1)

    # describe and save file
    reweighted = reweighted.to_dataset()
    reweighted.attrs["version"] = 3
    reweighted.attrs["description"] = """
    This set of emulator weights is generated using this script:
    dscim/dscim/utils/rff.py -> aggregate_rff_weights
    It cleans and aggregates the emulator weights csvs, linearly interpolates them between 5 year intervals, reweights them to sum to 1, and converts to ncdf4 format.
    """
    os.makedirs(output, exist_ok=True)
    reweighted.to_netcdf(f"{output}/damage_function_weights.nc4")

    # save out error files

    error_datasets = p_map(partial(clean_error, root=root), range(1, 10001, 1))
    error_concatenated = xr.concat(error_datasets, "rff_sp")

    # describe and save file
    error_concatenated = error_concatenated.to_dataset()
    error_concatenated.attrs["version"] = 3
    error_concatenated.attrs["description"] = """
    This set of emulator weight errors is generated using this script:
    dscim/dscim/preprocessing/rff/aggregate_rff_weights.py
    It cleans and aggregates the emulator weights csvs for error rows only, and converts to ncdf4 format.
    """

    error_concatenated.to_netcdf(f"{output}/weights_errors.nc4")

dscim.utils.rff.clean_error

clean_error(draw, root)

Clean the weights csvs generated by the RFF emulator. This produces a file of the errors (for diagnostics).

Parameters:

Name Type Description Default
draw int, weight draw
required
root str, root directory
required
Source code in src/dscim/utils/rff.py
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
def clean_error(
    draw,
    root,
):
    """
    Clean the weights csvs generated by the RFF emulator.
    This produces a file of the errors (for diagnostics).

    Parameters
    ----------
    draw : int, weight draw
    root : str, root directory
    """

    ds = pd.read_csv(
        f"{root}/emulate-fivebean-{draw}.csv",
        skiprows=9,
    )

    # cleaning columns
    for i, name in enumerate(["iso", "year"]):
        ds[name] = ds["name"].str.split(":", expand=True)[i]

    # dropping weights rows and keeping only error rows
    ds = ds.loc[ds.param == "error"]

    ds["rff_sp"] = draw

    ds["year"] = ds.year.astype(int)

    ds = ds.set_index(["iso", "year", "rff_sp"]).value.to_xarray()

    return ds

dscim.utils.rff.clean_simulation

clean_simulation(draw, root)

Clean the weights csvs generated by the RFF emulator. This produces a file of the weights.

Parameters:

Name Type Description Default
draw int, weight draw
required
root str, root directory
required
Source code in src/dscim/utils/rff.py
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
def clean_simulation(
    draw,
    root,
):
    """
    Clean the weights csvs generated by the RFF emulator.
    This produces a file of the weights.

    Parameters
    ----------
    draw : int, weight draw
    root : str, root directory
    """

    ds = pd.read_csv(
        f"{root}/emulate-fivebean-{draw}.csv",
        skiprows=9,
    )

    # cleaning columns
    for i, name in enumerate(["model", "ssp"]):
        ds[name] = ds["name"].str.split("/", expand=True)[i]
    for i, name in enumerate(["year", "model"]):
        ds[name] = ds["model"].str.split(":", expand=True)[i]

    # dropping error rows and keeping only weights rows
    ds = ds.loc[ds.param != "error"]

    ds["model"] = ds.model.replace({"low": "IIASA GDP", "high": "OECD Env-Growth"})

    ds["rff_sp"] = draw

    ds["year"] = ds.year.astype(int)

    ds = ds.set_index(["model", "ssp", "rff_sp", "year"]).to_xarray()["value"]

    return ds

dscim.utils.rff.prep_rff_socioeconomics

prep_rff_socioeconomics(inflation_path, rff_path, runid_path, out_path, USA)

Generate the global or domestic RFF socioeconomics file for use with the dscim MainRecipe.

Source code in src/dscim/utils/rff.py
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
def prep_rff_socioeconomics(
    inflation_path,
    rff_path,
    runid_path,
    out_path,
    USA,
):
    """Generate the global or domestic RFF socioeconomics file for use with the `dscim` MainRecipe."""

    # Load Fed GDP deflator
    fed_gdpdef = pd.read_csv(inflation_path).set_index("year")["gdpdef"].to_dict()

    # transform 2011 USD to 2019 USD
    inflation_adj = fed_gdpdef[2019] / fed_gdpdef[2011]

    # read in RFF data
    socioec = xr.open_dataset(rff_path)

    if not USA:
        print("Summing to globe.")
        socioec = socioec.sum("Country")
    else:
        print("USA output.")
        socioec = socioec.sel(Country="USA", drop=True)

    # interpolate with log -> linear interpolation -> exponentiate
    socioec = np.exp(
        np.log(socioec).interp({"Year": range(2020, 2301, 1)}, method="linear")
    ).rename({"runid": "rff_sp", "Year": "year", "Pop": "pop", "GDP": "gdp"})

    socioec["pop"] = socioec["pop"] * 1000
    socioec["gdp"] = socioec["gdp"] * 1e6 * inflation_adj

    # read in RFF runids and update coordinates with them
    run_id = xr.open_dataset(runid_path)
    socioec = socioec.sel(rff_sp=run_id.rff_sp, drop=True)

    if not USA:
        socioec.expand_dims({"region": ["world"]}).to_netcdf(
            f"{out_path}/rff_global_socioeconomics.nc4"
        )
    else:
        socioec.expand_dims({"region": ["USA"]}).to_netcdf(
            f"{out_path}/rff_USA_socioeconomics.nc4"
        )

dscim.utils.rff.process_rff_sample

process_rff_sample(i, rffpath, ssp_df, outdir, HEADER, **storage_options)

Clean raw socioeconomic projections from a single RFF-SP simulation run, pass the cleaned dataset to the solve_optimization function, and save outputs This produces a csv file of RFF emulator weights and country-level errors in 5-year increments for a single RFF-SP

Source code in src/dscim/utils/rff.py
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
def process_rff_sample(i, rffpath, ssp_df, outdir, HEADER, **storage_options):
    """Clean raw socioeconomic projections from a single RFF-SP simulation run,
    pass the cleaned dataset to the `solve_optimization` function, and save outputs
    This produces a csv file of RFF emulator weights and country-level errors in 5-year
    increments for a single RFF-SP
    """

    read_feather = os.path.join(rffpath, f"run_{i:d}.feather")
    rff_raw = pd.read_feather(read_feather)
    rff_raw.rename(columns={"Year": "year", "Country": "iso"}, inplace=True)

    # Fill missing data with mean across SSP scenarios of the same years
    rff_df = pd.DataFrame()
    for iso, group in rff_raw.groupby("iso"):
        minyear = min(group.year)
        before_all = ssp_df[(ssp_df.year < minyear) & (ssp_df.iso == iso)][
            ["iso", "year", "value"]
        ]
        before = before_all.groupby(["iso", "year"]).mean().reset_index()
        after = pd.DataFrame(
            dict(
                iso=iso,
                year=group.year,
                value=(88.58 / 98.71) * (group.GDP * 1e6) / (group.Pop * 1000),
            )
        )  # Get in per capita 2005 PPP-adjusted USD rff GDP
        all_year_df = pd.concat((before, after))
        rff_df = pd.concat((rff_df, all_year_df))

    rff_df["loginc"] = np.log(rff_df.value)
    rff_df["isoyear"] = rff_df.apply(lambda row: f"{row.iso}:{row.year:d}", axis=1)

    rff_df = pd.merge(rff_df, rff_raw, on=["year", "iso"], how="left")

    rff_df["weight"] = (
        88.58 / 98.71
    ) * rff_df.GDP  # Adjust weight measurement from 2011 tp 2005 PPP USD

    # print(rff_df.iso[np.isnan(rff_df.weight)])
    rff_df["weight"] = rff_df["weight"].fillna(
        np.exp(np.nanmean(np.log(rff_df.weight)))
    )  # Fill missing value weights with sample mean

    out_df = solve_optimization(ssp_df, rff_df)

    write_file = os.path.join(outdir, "emulate-%d.csv") % i

    protocol = write_file.split("://")[0] if "://" in write_file else ""
    write_options = storage_options if protocol != "" else {}
    fs = fsspec.filesystem(protocol, **write_options)

    with fs.open(write_file, "w") as outf:
        outf.write(HEADER.strip() + "\n")
        out_df.to_csv(outf, index=False)

dscim.utils.rff.process_ssp_sample

process_ssp_sample(ssppath)

Clean SSP per capita GDP projections

Source code in src/dscim/utils/rff.py
158
159
160
161
162
163
164
165
166
167
168
def process_ssp_sample(ssppath):
    """Clean SSP per capita GDP projections"""
    ssp_df = pd.read_csv(ssppath, skiprows=11)
    ssp_df = ssp_df[ssp_df.year >= 2010]
    ssp_df["loginc"] = np.log(ssp_df.value)
    ssp_df["isoyear"] = ssp_df.apply(lambda row: f"{row.iso}:{row.year:d}", axis=1)
    ssp_df["yearscen"] = ssp_df.apply(
        lambda row: f"{row.year:d}:{row.model}/{row.scenario}", axis=1
    )

    return ssp_df

dscim.utils.rff.rff_damage_functions

rff_damage_functions(sectors, eta_rhos, USA, ssp_gdp, rff_gdp, recipes_discs, in_library, out_library, runid_path, weights_path, pulse_year, mask)

Wrapper function for weight_df().

Source code in src/dscim/utils/rff.py
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
def rff_damage_functions(
    sectors,
    eta_rhos,
    USA,
    ssp_gdp,
    rff_gdp,
    recipes_discs,
    in_library,
    out_library,
    runid_path,
    weights_path,
    pulse_year,
    mask,
):
    """Wrapper function for `weight_df()`."""

    # ssp GDP for fractionalizing damage functions
    ssp_gdp = xr.open_zarr(ssp_gdp, consolidated=True).sum("region").gdp

    # get RFF data
    region = "USA" if USA else "world"
    rff_gdp = xr.open_dataset(rff_gdp).sel(region=region, drop=True).gdp

    # get global consumption factors to extrapolate damage function
    factors = rff_gdp.sel(year=slice(2100, 2300)) / rff_gdp.sel(year=2099)

    # get RFF emulator weights
    run_id = xr.open_dataset(runid_path)
    weights = (
        xr.open_dataset(f"{weights_path}/damage_function_weights.nc4")
        .sel(rff_sp=run_id.rff_sp, drop=True)
        .value
    )

    for recipe_disc, sector, eta_rho in product(recipes_discs, sectors, eta_rhos):
        print(f"{datetime.now()} : {recipe_disc} {sector} {eta_rho}")

        weight_df(
            sector=sector,
            eta_rho=eta_rho,
            recipe=recipe_disc[0],
            disc=recipe_disc[1],
            file="damage_function_coefficients",
            in_library=in_library,
            out_library=out_library,
            rff_gdp=rff_gdp,
            ssp_gdp=ssp_gdp,
            weights=weights,
            factors=factors,
            pulse_year=pulse_year,
            mask=mask,
        )

dscim.utils.rff.solve_optimization

solve_optimization(ssp_df, rff_df)

Generate weights based on which to derive the weighted average of damage function coefficents across six SSP-growth models for a single RFF-SP This function applies an emulation scheme to calculate a set of weights, constrained to sum to unity, that, when used to take a weighted average of global GDP across SSP-growth models (3 SSPs X 2 IAMs), most closely recovers the global GDP in the RFF-SP simulation run that wish to emulate. The emulation scheme is estimated and applied separately for each 5-year period, of a single RFF-SP. Within each period, the scheme aims to interpolate between the SSP-growth models in order to match the country-level GDPs designated by the given RFF-SP. Empirically, it solves an optimization problem to minimize a weighted sum of country-level errors, taking country-level RFF-SP GDPs as weights

Parameters:

Name Type Description Default
ssp_df DataFrame

Dataset with country-level log per capita GDPs by SSP-growth models in 5-year increments, post- processed by the process_ssp_sample function

required
rff_df DataFrame

Dateset with country-level GDPs and log per capita GDPs for a single RFF-SP simulation run

required

Returns:

Type Description
Dataset with a set of SSP-growth model weights and country-level errors in 5-year increments

for a single RFF-SP

Source code in src/dscim/utils/rff.py
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
def solve_optimization(ssp_df, rff_df):
    """Generate weights based on which to derive the weighted average of damage function coefficents
    across six SSP-growth models for a single RFF-SP
    This function applies an emulation scheme to calculate a set of weights, constrained to
    sum to unity, that, when used to take a weighted average of global GDP across SSP-growth models
    (3 SSPs X 2 IAMs), most closely recovers the global GDP in the RFF-SP simulation run that
    wish to emulate. The emulation scheme is estimated and applied separately for each 5-year period,
    of a single RFF-SP. Within each period, the scheme aims to interpolate between the SSP-growth models
    in order to match the country-level GDPs designated by the given RFF-SP. Empirically, it solves
    an optimization problem to minimize a weighted sum of country-level errors, taking country-level
    RFF-SP GDPs as weights
    Parameters
    ----------
    ssp_df : pd.DataFrame
        Dataset with country-level log per capita GDPs by SSP-growth models in 5-year increments, post-
        processed by the `process_ssp_sample` function
    rff_df : pd.DataFrame
        Dateset with country-level GDPs and log per capita GDPs for a single RFF-SP simulation run
    Returns
    ------
        Dataset with a set of SSP-growth model weights and country-level errors in 5-year increments
        for a single RFF-SP
    """
    # Import gurobipy here so only required for this function rather than entire module.
    import gurobipy as gp

    ssp_df = ssp_df[(ssp_df.scenario != "SSP1") & (ssp_df.scenario != "SSP5")]

    output = []

    header = ["year", "param", "name", "value"]

    years = pd.unique(ssp_df.year)
    for year in years:
        sspidf = ssp_df[ssp_df.year == year]
        rffidf = rff_df[rff_df.year == year]

        if rffidf.shape[0] == 0:
            continue

        isoyears = pd.unique(sspidf.isoyear)

        # Create parameters list
        alphaparams = pd.unique(sspidf.yearscen)

        # Drop the first entry for each subgroup
        alphaparams_butfirst = np.delete(alphaparams, 0)
        params = np.concatenate((isoyears, alphaparams_butfirst))
        paramindex_alpha0 = len(isoyears)

        # Construct objective function
        if "weight" in rff_df.columns:
            weights = [
                rffidf.weight[(rffidf.isoyear == isoyear)].values[0]
                for isoyear in isoyears
            ]
        else:
            weights = np.ones(len(isoyears))
        objfunc = np.concatenate((weights, np.zeros(len(alphaparams_butfirst))))

        # Contruct constraints, all in the form of A x < b
        AA_rows = []
        AA_cols = []
        AA_data = []
        bb = []

        def add_AA_cell(row, col, value):
            AA_rows.append(row)
            AA_cols.append(col)
            AA_data.append(value)

        ## Rows defining absolute values

        # d_it > y_it - (sum_s>1 alpha_is y_sit + (1 - sum_s>1 alpha_is) y_1it)
        # -d_it - (sum_s>1 alpha_is y_sit - (sum_s>1 alpha_is) y_1it) < -y_it + y_1it

        # d_it > -(y_it - (sum_s>1 alpha_is y_sit + (1 - sum_s>1 alpha_is) y_1it))
        # -d_it + (sum_s>1 alpha_is y_sit - (sum_s>1 alpha_is) y_1it) < y_it - y_1it

        for ii, isoyear in enumerate(isoyears):
            subdf = sspidf[sspidf.isoyear == isoyear]
            if subdf.shape[0] == 0 or not np.any(rffidf.isoyear == isoyear):
                continue

            try:
                y1it = subdf.loginc[subdf.yearscen == alphaparams[0]].values[0]
            except Exception as ex:
                print(ii, isoyear, ex)
                print("Exception! Keep going..")  # KM added
                continue

            add_AA_cell(len(bb), ii, -1)
            add_AA_cell(len(bb) + 1, ii, -1)

            for jj, alphaparam in enumerate(alphaparams_butfirst):
                ysit = subdf.loginc[subdf.yearscen == alphaparam].values[0]

                add_AA_cell(len(bb), paramindex_alpha0 + jj, -ysit + y1it)
                add_AA_cell(len(bb) + 1, paramindex_alpha0 + jj, ysit - y1it)

            bb.append(-rffidf.loginc[(rffidf.isoyear == isoyear)].values[0] + y1it)
            bb.append(rffidf.loginc[(rffidf.isoyear == isoyear)].values[0] - y1it)

        constrindex_alphag10 = len(bb)

        # sum alpha_is < 1
        for jj in range(paramindex_alpha0, len(params)):
            add_AA_cell(constrindex_alphag10, jj, 1)
        bb.append(1)

        constrindex_end = constrindex_alphag10 + 1

        AA = coo_matrix(
            (AA_data, (AA_rows, AA_cols)), shape=(constrindex_end, len(params))
        )

        # Also constrained so that d_it > 0 and alpha_is > 0

        env = gp.Env(empty=True)
        env.setParam("OutputFlag", 0)
        env.start()
        mod = gp.Model("gourmet", env=env)
        xx = mod.addMVar(shape=len(objfunc), vtype=gp.CONTINUOUS, name="xx")
        mod.setObjective(objfunc @ xx, gp.MINIMIZE)
        bb = np.array(bb)
        mod.addConstr(AA @ xx <= bb)
        mod.optimize()
        errors = np.around(xx.X[:paramindex_alpha0], 6)
        alphas = np.around(xx.X[paramindex_alpha0:], 6)

        for ii, error in enumerate(errors):
            output.append([year, "error", isoyears[ii], error])

        output.append([year, "alpha", alphaparams[0], max(0, 1 - sum(alphas))])
        for ii, alpha in enumerate(alphas):
            output.append([year, "alpha", alphaparams_butfirst[ii], alpha])

    out_df = pd.DataFrame(output, columns=header)

    return out_df

dscim.utils.rff.weight_df

weight_df(sector, eta_rho, recipe, disc, file, in_library, out_library, rff_gdp, ssp_gdp, weights, factors, pulse_year, fractional=False, mask='unmasked')

Weight, fractionalize, and combine SSP damage functions, then multiply by RFF GDP to return RFF damage functions.

Source code in src/dscim/utils/rff.py
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
def weight_df(
    sector,
    eta_rho,
    recipe,
    disc,
    file,
    in_library,
    out_library,
    rff_gdp,
    ssp_gdp,
    weights,
    factors,
    pulse_year,
    fractional=False,
    mask="unmasked",
):
    """Weight, fractionalize, and combine SSP damage functions,
    then multiply by RFF GDP to return RFF damage functions.
    """

    # get damage function as share of global GDP
    df = (
        xr.open_dataset(
            f"{in_library}/{sector}/{pulse_year}/{mask}/{recipe}_{disc}_eta{eta_rho[0]}_rho{eta_rho[1]}_{file}.nc4"
        )
        / ssp_gdp
    )

    # pre-2100 weighted fractional damage functions
    rff = (df * weights).sum(["ssp", "model"])

    # save fractional damage function
    if fractional:
        rff.sel(year=slice(2020, 2099)).to_netcdf(
            f"{out_library}/{sector}/{pulse_year}/{mask}/{recipe}_{disc}_eta{eta_rho[0]}_rho{eta_rho[1]}_fractional_{file}.nc4"
        )

    # recover damage function as dollars instead of fraction
    rff = (rff * rff_gdp).sel(year=slice(2020, 2099))

    # post-2100 weighted damage functions
    post_2100 = rff.sel(year=2099) * factors

    dfs = xr.combine_by_coords([rff, post_2100])

    os.makedirs(f"{out_library}/{sector}/{pulse_year}/{mask}", exist_ok=True)
    dfs.to_netcdf(
        f"{out_library}/{sector}/{pulse_year}/{mask}/{recipe}_{disc}_eta{eta_rho[0]}_rho{eta_rho[1]}_{file}.nc4"
    )