Skip to content

simple_storage

Classes:

Name Description
Climate

This class wraps all climate data used in DSCIM.

EconVars

This class wraps all socioeconomic data used in DSCIM.

StackedDamages

This class wraps all damages data used in DSCIM.

dscim.menu.simple_storage.Climate

This class wraps all climate data used in DSCIM.

Parameters:

Name Type Description Default
gmst_path str

Path to GMST anomalies for damage function step.

required
gmsl_path str

Path to GMSL anomalies for damage function step.

required
gmst_fair_path str

Path to GMST anomalies data for FAIR step.

required
gmsl_fair_path str

Path to GMSL anomalies data for FAIR step.

None
pulse_year int

Year of the greenhouse gas pulse.

required
damages_pulse_conversion_path

Path to file containing conversion factors for each greenhouse gas to turn the pulse units into the appropriate units for an SCC calculation.

required
ecs_mask_path str or None

Path to a boolean NetCDF4 dataset sharing the same coordinates as self.anomalies, indicating which simulations should be included or excluded.

None
ecs_mask_name str or None

Name of mask to be called from within ecs_mask_path NetCDF file.

None
base_period

Period for rebasing FAIR temperature anomalies. This should match the CIL projection system's base period.

(2001, 2010)
emission_scenarios

List of emission scenarios for which SCC will be calculated. Default is (), which gets set to ["ssp119", "ssp126", "ssp245", "ssp460", "ssp370", "ssp585"]. Use None when RCP emission scenarios are not the climate projections, such as with RFF-SP projections.

()
gases

List of greenhouse gases for which SCC will be calculated. Default is ["CO2_Fossil", "CH4", "N2O"].

None

Methods:

Name Description
anomalies

This function combines and subsets the projected GMST and GMSL anomalies by

anomaly_vars

Anomaly variables to include

Attributes:

Name Type Description
conversion

Conversion factors to turn the pulse units

fair_control

Anomalies without a pulse

fair_median_params_control

FAIR median parameters anomaly without a pulse

fair_median_params_pulse

FAIR median parameters anomaly with a pulse

fair_pulse

Anomalies with a pulse

gmsl

Cached GMSL anomalies

gmsl_anomalies

This function takes coastal sector's GMSL relative to 1991-2009.

gmst

Cached GMST anomalies

gmst_anomalies

This function takes FAIR GMST relative to 1765.

Source code in src/dscim/menu/simple_storage.py
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
class Climate:
    """
    This class wraps all climate data used in DSCIM.

    Parameters
    ---------
    gmst_path : str
        Path to GMST anomalies for damage function step.
    gmsl_path : str
        Path to GMSL anomalies for damage function step.
    gmst_fair_path : str
        Path to GMST anomalies data for FAIR step.
    gmsl_fair_path : str
        Path to GMSL anomalies data for FAIR step.
    pulse_year : int
        Year of the greenhouse gas pulse.
    damages_pulse_conversion_path: str
        Path to file containing conversion factors for each greenhouse gas
        to turn the pulse units into the appropriate units for an SCC calculation.
    ecs_mask_path : str or None, optional
        Path to a boolean NetCDF4 dataset sharing the same coordinates as self.anomalies,
        indicating which simulations should be included or excluded.
    ecs_mask_name : str or None, optional
        Name of mask to be called from within ``ecs_mask_path`` NetCDF file.
    base_period: tuple, optional
        Period for rebasing FAIR temperature anomalies. This should match the CIL projection system's base period.
    emission_scenarios: list or None, optional
        List of emission scenarios for which SCC will be calculated. Default
        is (), which gets set to ["ssp119", "ssp126", "ssp245", "ssp460", "ssp370", "ssp585"].
        Use `None` when RCP emission scenarios are not the climate projections,
        such as with RFF-SP projections.
    gases: list or None, optional
        List of greenhouse gases for which SCC will be calculated. Default is
        ["CO2_Fossil", "CH4", "N2O"].
    """

    def __init__(
        self,
        gmst_path,
        gmsl_path,
        gmst_fair_path,
        damages_pulse_conversion_path,
        pulse_year,
        gmsl_fair_path=None,
        ecs_mask_path=None,
        ecs_mask_name=None,
        base_period=(2001, 2010),
        emission_scenarios=(),
        gases=None,
    ):
        if emission_scenarios == ():
            emission_scenarios = [
                "ssp119",
                "ssp126",
                "ssp245",
                "ssp460",
                "ssp370",
                "ssp585",
            ]
        if gases is None:
            gases = ["CO2_Fossil", "CH4", "N2O"]

        self.gmst_path = gmst_path
        self.gmsl_path = gmsl_path
        self.gmst_fair_path = gmst_fair_path
        self.damages_pulse_conversion_path = damages_pulse_conversion_path
        self.gmsl_fair_path = gmsl_fair_path
        self.pulse_year = pulse_year
        self.emission_scenarios = emission_scenarios
        self.gases = gases
        self.base_period = base_period
        self.ecs_mask_path = ecs_mask_path
        self.ecs_mask_name = ecs_mask_name
        self.logger = logging.getLogger(__name__)

    @property
    def gmst(self):
        """Cached GMST anomalies"""
        gmst = pd.read_csv(self.gmst_path)

        if "temp" in gmst.columns:
            gmst = gmst.rename(columns={"temp": "anomaly"})

        return gmst

    @property
    def gmsl(self):
        """Cached GMSL anomalies"""
        gmsl = xr.open_zarr(self.gmsl_path).gmsl.to_dataframe().reset_index()

        return gmsl

    @property
    def gmst_anomalies(self):
        """This function takes FAIR GMST relative to 1765.
        It rebases it to self.base_period.
        """
        # open FAIR GMST
        temps = xr.open_dataset(
            self.gmst_fair_path,
            chunks={
                "year": 11,
            },
        )

        # calculate base period average
        base_period = temps.sel(
            year=slice(self.base_period[0], self.base_period[1])
        ).mean(dim="year")

        # subset relevant years to save compute time
        temps = temps.sel(year=slice(self.pulse_year, 2300))

        # calculate anomalies
        anomaly = temps - base_period

        return anomaly

    @property
    def gmsl_anomalies(self):
        """This function takes coastal sector's GMSL relative to 1991-2009.
        No rebasing occurs, as coastal damages are rebased to the same period.
        """
        anomaly = xr.open_dataset(self.gmsl_fair_path)
        anomaly = anomaly.chunk(anomaly.dims)

        return anomaly

    @cachedproperty
    def anomaly_vars(self):
        """Anomaly variables to include"""
        return (
            ["temperature", "gmsl"]
            if self.gmsl_fair_path is not None
            else ["temperature"]
        )

    @cachedproperty
    def anomalies(self):
        """
        This function combines and subsets the projected GMST and GMSL anomalies by
        pulse year and emissions scenario. If applicable, it
        masks the data according to the mask passed to self.ecs_mask_path.
        """
        if self.gmsl_fair_path is not None:
            anomaly = xr.combine_by_coords(
                [self.gmst_anomalies, self.gmsl_anomalies], combine_attrs="drop"
            )
        else:
            anomaly = self.gmst_anomalies

        # subset by relevant coordinates
        anomaly = anomaly.sel(
            year=slice(self.pulse_year, 2300),
            gas=self.gases,
        )

        if self.emission_scenarios is not None:
            anomaly = anomaly.sel(rcp=self.emission_scenarios)

        if "pulse_year" in anomaly.dims:
            anomaly = anomaly.sel(pulse_year=self.pulse_year, drop=True)

        # Apply ECS mask
        if (self.ecs_mask_name is not None) and (self.ecs_mask_path is not None):
            self.logger.info(f"Masking anomalies with {self.ecs_mask_name}.")

            # load mask
            mask = xr.open_dataset(self.ecs_mask_path)[self.ecs_mask_name]

            # median variables can't be masked because they don't have a simulation dimension
            vars_no_mask = [v for v in anomaly.keys() if "median" in v]
            vars_to_mask = [v for v in anomaly.keys() if v not in vars_no_mask]

            # mask and put back together
            anomaly = anomaly[vars_no_mask].update(
                anomaly[vars_to_mask].where(mask, drop=True)
            )

        return anomaly

    @property
    def fair_control(self):
        """Anomalies without a pulse"""
        ds = self.anomalies[[f"control_{var}" for var in self.anomaly_vars]]
        return ds.rename({f"control_{var}": var for var in self.anomaly_vars})

    @property
    def fair_pulse(self):
        """Anomalies with a pulse"""
        ds = self.anomalies[[f"pulse_{var}" for var in self.anomaly_vars]]
        return ds.rename({f"pulse_{var}": var for var in self.anomaly_vars})

    @property
    def fair_median_params_control(self):
        """FAIR median parameters anomaly without a pulse"""
        ds = self.anomalies[
            [f"medianparams_control_{var}" for var in self.anomaly_vars]
        ]
        return ds.rename(
            {f"medianparams_control_{var}": var for var in self.anomaly_vars}
        )

    @property
    def fair_median_params_pulse(self):
        """FAIR median parameters anomaly with a pulse"""
        ds = self.anomalies[[f"medianparams_pulse_{var}" for var in self.anomaly_vars]]
        return ds.rename(
            {f"medianparams_pulse_{var}": var for var in self.anomaly_vars}
        )

    @property
    def conversion(self):
        """Conversion factors to turn the pulse units
        into the appropriate units for an SCC calculation"""

        conversion = (
            xr.open_dataset(self.damages_pulse_conversion_path)
            .sel(gas=self.gases)
            .to_array()
            .isel(variable=0, drop=True)
        )
        return conversion

dscim.menu.simple_storage.Climate.conversion property

conversion

Conversion factors to turn the pulse units into the appropriate units for an SCC calculation

dscim.menu.simple_storage.Climate.fair_control property

fair_control

Anomalies without a pulse

dscim.menu.simple_storage.Climate.fair_median_params_control property

fair_median_params_control

FAIR median parameters anomaly without a pulse

dscim.menu.simple_storage.Climate.fair_median_params_pulse property

fair_median_params_pulse

FAIR median parameters anomaly with a pulse

dscim.menu.simple_storage.Climate.fair_pulse property

fair_pulse

Anomalies with a pulse

dscim.menu.simple_storage.Climate.gmsl property

gmsl

Cached GMSL anomalies

dscim.menu.simple_storage.Climate.gmsl_anomalies property

gmsl_anomalies

This function takes coastal sector's GMSL relative to 1991-2009. No rebasing occurs, as coastal damages are rebased to the same period.

dscim.menu.simple_storage.Climate.gmst property

gmst

Cached GMST anomalies

dscim.menu.simple_storage.Climate.gmst_anomalies property

gmst_anomalies

This function takes FAIR GMST relative to 1765. It rebases it to self.base_period.

dscim.menu.simple_storage.Climate.anomalies

anomalies()

This function combines and subsets the projected GMST and GMSL anomalies by pulse year and emissions scenario. If applicable, it masks the data according to the mask passed to self.ecs_mask_path.

Source code in src/dscim/menu/simple_storage.py
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
@cachedproperty
def anomalies(self):
    """
    This function combines and subsets the projected GMST and GMSL anomalies by
    pulse year and emissions scenario. If applicable, it
    masks the data according to the mask passed to self.ecs_mask_path.
    """
    if self.gmsl_fair_path is not None:
        anomaly = xr.combine_by_coords(
            [self.gmst_anomalies, self.gmsl_anomalies], combine_attrs="drop"
        )
    else:
        anomaly = self.gmst_anomalies

    # subset by relevant coordinates
    anomaly = anomaly.sel(
        year=slice(self.pulse_year, 2300),
        gas=self.gases,
    )

    if self.emission_scenarios is not None:
        anomaly = anomaly.sel(rcp=self.emission_scenarios)

    if "pulse_year" in anomaly.dims:
        anomaly = anomaly.sel(pulse_year=self.pulse_year, drop=True)

    # Apply ECS mask
    if (self.ecs_mask_name is not None) and (self.ecs_mask_path is not None):
        self.logger.info(f"Masking anomalies with {self.ecs_mask_name}.")

        # load mask
        mask = xr.open_dataset(self.ecs_mask_path)[self.ecs_mask_name]

        # median variables can't be masked because they don't have a simulation dimension
        vars_no_mask = [v for v in anomaly.keys() if "median" in v]
        vars_to_mask = [v for v in anomaly.keys() if v not in vars_no_mask]

        # mask and put back together
        anomaly = anomaly[vars_no_mask].update(
            anomaly[vars_to_mask].where(mask, drop=True)
        )

    return anomaly

dscim.menu.simple_storage.Climate.anomaly_vars

anomaly_vars()

Anomaly variables to include

Source code in src/dscim/menu/simple_storage.py
139
140
141
142
143
144
145
146
@cachedproperty
def anomaly_vars(self):
    """Anomaly variables to include"""
    return (
        ["temperature", "gmsl"]
        if self.gmsl_fair_path is not None
        else ["temperature"]
    )

dscim.menu.simple_storage.EconVars

This class wraps all socioeconomic data used in DSCIM.

Parameters:

Name Type Description Default
path_econ str

Path to economic data in NetCDF format.

required
Notes

Note that the input data must have population and GDP data at the IR level with the desired dimensions: SSP, IAM (or model), IR, and year.

Attributes:

Name Type Description
econ_vars

Economic variables

Source code in src/dscim/menu/simple_storage.py
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
class EconVars:
    """
    This class wraps all socioeconomic data used in DSCIM.

    Parameters
    ----------
    path_econ : str
        Path to economic data in NetCDF format.

    Notes
    ------
    Note that the input data must have population and GDP data at the IR level
    with the desired dimensions: SSP, IAM (or ``model``), IR, and year.
    """

    def __init__(self, path_econ):
        self.path = path_econ
        self.logger = logging.getLogger(__name__)

    @property
    def econ_vars(self):
        """Economic variables"""
        if self.path[-3:] == "arr":
            raw = xr.open_zarr(self.path, consolidated=True)
        else:
            raw = xr.open_dataset(self.path)
        return raw[["gdp", "pop"]]

dscim.menu.simple_storage.EconVars.econ_vars property

econ_vars

Economic variables

dscim.menu.simple_storage.StackedDamages

This class wraps all damages data used in DSCIM.

Parameters:

Name Type Description Default
sector_path str

Path to input damages.

required
delta str

Climate change damages variable.

None
histclim str

No climate change damages variable.

None
econ_vars EconVars
required
climate_vars Climate
required
subset_dict dict

A dictionary with coordinate values to filter data.

None
eta int

Curvature parameter of the CRRA utility function.

required
gdppc_bottom_code int or float

Minimum values allowed for per-capita GDP in self.gdppc.

required
ce_path str

Path to directory containing certainty equivalent reduced damages and risk aversion data. This directory can contain adding_up_cc.zarr and adding_up_no_cc.zarr which have reduced damages due to climate in dollars (by impact region, year, etc.) for the adding_up recipe with climate change (cc) and without climate change (no cc). This directory should also contain risk_aversion_{ce_type}_eta{eta}.zarr as used for risk aversion calculations.

None

Methods:

Name Description
cut

Subset array to self.subset_dict.

risk_aversion_damages

This function calls pre-calculated risk-aversion IR-level 'CE' over batches.

Attributes:

Name Type Description
adding_up_damages

This property calls pre-calculated adding-up IR-level 'mean' over batches.

cut_econ_vars

Economic variables from SSP object

Source code in src/dscim/menu/simple_storage.py
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
class StackedDamages:
    """
    This class wraps all damages data used in DSCIM.

    Parameters
    ----------
    sector_path : str
        Path to input damages.
    delta : str
        Climate change damages variable.
    histclim : str
        No climate change damages variable.
    econ_vars : dscim.simple_storage.EconVars
    climate_vars : dscim.simple_storage.Climate
    subset_dict : dict
        A dictionary with coordinate values to filter data.
    eta : int
        Curvature parameter of the CRRA utility function.
    gdppc_bottom_code : int or float
        Minimum values allowed for per-capita GDP in ``self.gdppc``.
    ce_path : str, optional
        Path to directory containing certainty equivalent reduced damages and
        risk aversion data. This directory can contain `adding_up_cc.zarr` and
        `adding_up_no_cc.zarr` which have reduced damages due to climate in
        dollars (by impact region, year, etc.) for the `adding_up` recipe with
        climate change (cc) and without climate change (no cc).
        This directory should also contain `risk_aversion_{ce_type}_eta{eta}.zarr`
        as used for risk aversion calculations.
    """

    NAME = ""

    def __init__(
        self,
        sector_path,
        save_path,
        econ_vars,
        climate_vars,
        eta,
        gdppc_bottom_code,
        delta=None,
        histclim=None,
        ce_path=None,
        subset_dict=None,
    ):
        self.sector_path = sector_path
        self.save_path = save_path
        self.gdppc_bottom_code = gdppc_bottom_code
        self.subset_dict = subset_dict
        self.econ_vars = econ_vars
        self.climate = climate_vars
        self.delta = delta
        self.histclim = histclim
        self.ce_path = ce_path
        self.eta = eta

        self.logger = logging.getLogger(__name__)

    def cut(self, xr_array, end_year=2099):
        """Subset array to self.subset_dict.

        Parameters
        ----------
        xr_array :  xr.Dataset or xr.Dataarray
            An xarray object

        end_year : int
            Which year should be last in the dataset (all further data is dropped)

        Returns
        -------
        xr.Dataset or xr.Dataarray
            ``xarray`` object filtered using the dict defined in the class:
            ``self.subset_dict``
        """

        valid_keys = {
            key: self.subset_dict[key]
            for key in self.subset_dict
            if key in xr_array.coords
        }

        self.logger.debug(f"Subsetting on {valid_keys} keys.")

        xr_data = xr_array.sel(valid_keys).sel(
            year=slice(self.climate.pulse_year - 2, end_year)
        )

        return xr_data

    @property
    def cut_econ_vars(self):
        """Economic variables from SSP object"""
        if 2300 in self.econ_vars.econ_vars.year:
            # because RFF data runs to 2300, these menu runs don't need to sliced and extrapolated
            raw = self.cut(self.econ_vars.econ_vars, end_year=2300)
        else:
            # 2100 should be dropped from SSP data since CIL damages only extend to 2099
            raw = self.cut(self.econ_vars.econ_vars, end_year=2099)

        if raw is None:
            raise ValueError(
                "Economic data is not loaded. Check your config or input settings."
            )
        return raw

    @cachedproperty
    def gdp(self):
        return self.cut_econ_vars.gdp

    @cachedproperty
    def pop(self):
        return self.cut_econ_vars.pop

    @cachedproperty
    def gdppc(self):
        return np.maximum(self.gdp / self.pop, self.gdppc_bottom_code)

    @property
    def adding_up_damages(self):
        """This property calls pre-calculated adding-up IR-level 'mean' over batches."""

        mean_cc = f"{self.ce_path}/adding_up_cc.zarr"
        mean_no_cc = f"{self.ce_path}/adding_up_no_cc.zarr"

        if os.path.exists(mean_cc) and os.path.exists(mean_no_cc):
            self.logger.info(
                f"Adding up aggregated damages found at {mean_cc}, {mean_no_cc}. These are being loaded..."
            )
            damages = (
                (xr.open_zarr(mean_no_cc).no_cc - xr.open_zarr(mean_cc).cc) * self.pop
            ).sum("region")
        else:
            raise NotImplementedError(
                f"Adding up reduced damages not found: {mean_no_cc}, {mean_cc}. Please reduce damages for for `adding_up`."
            )
        return self.cut(damages)

    def risk_aversion_damages(self, ce_type):
        """This function calls pre-calculated risk-aversion IR-level 'CE' over batches.

        Parameters
        ----------
        ce_type : either `no_cc` or `cc`

        Returns
        -------
        xr.DataArray
        """
        file = f"{self.ce_path}/risk_aversion_{ce_type}_eta{self.eta}.zarr"

        if os.path.exists(file):
            self.logger.info(
                f"Risk-aversion CEs found at {file}. These are being loaded..."
            )
        else:
            raise NotImplementedError(
                "Risk-aversion CEs not found. Please run CE_calculation.ipynb for `risk_aversion`."
            )
        return self.cut(xr.open_zarr(file))

dscim.menu.simple_storage.StackedDamages.adding_up_damages property

adding_up_damages

This property calls pre-calculated adding-up IR-level 'mean' over batches.

dscim.menu.simple_storage.StackedDamages.cut_econ_vars property

cut_econ_vars

Economic variables from SSP object

dscim.menu.simple_storage.StackedDamages.cut

cut(xr_array, end_year=2099)

Subset array to self.subset_dict.

Parameters:

Name Type Description Default
xr_array xr.Dataset or xr.Dataarray

An xarray object

required
end_year int

Which year should be last in the dataset (all further data is dropped)

2099

Returns:

Type Description
Dataset or Dataarray

xarray object filtered using the dict defined in the class: self.subset_dict

Source code in src/dscim/menu/simple_storage.py
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
def cut(self, xr_array, end_year=2099):
    """Subset array to self.subset_dict.

    Parameters
    ----------
    xr_array :  xr.Dataset or xr.Dataarray
        An xarray object

    end_year : int
        Which year should be last in the dataset (all further data is dropped)

    Returns
    -------
    xr.Dataset or xr.Dataarray
        ``xarray`` object filtered using the dict defined in the class:
        ``self.subset_dict``
    """

    valid_keys = {
        key: self.subset_dict[key]
        for key in self.subset_dict
        if key in xr_array.coords
    }

    self.logger.debug(f"Subsetting on {valid_keys} keys.")

    xr_data = xr_array.sel(valid_keys).sel(
        year=slice(self.climate.pulse_year - 2, end_year)
    )

    return xr_data

dscim.menu.simple_storage.StackedDamages.risk_aversion_damages

risk_aversion_damages(ce_type)

This function calls pre-calculated risk-aversion IR-level 'CE' over batches.

Parameters:

Name Type Description Default
ce_type either `no_cc` or `cc`
required

Returns:

Type Description
DataArray
Source code in src/dscim/menu/simple_storage.py
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
def risk_aversion_damages(self, ce_type):
    """This function calls pre-calculated risk-aversion IR-level 'CE' over batches.

    Parameters
    ----------
    ce_type : either `no_cc` or `cc`

    Returns
    -------
    xr.DataArray
    """
    file = f"{self.ce_path}/risk_aversion_{ce_type}_eta{self.eta}.zarr"

    if os.path.exists(file):
        self.logger.info(
            f"Risk-aversion CEs found at {file}. These are being loaded..."
        )
    else:
        raise NotImplementedError(
            "Risk-aversion CEs not found. Please run CE_calculation.ipynb for `risk_aversion`."
        )
    return self.cut(xr.open_zarr(file))