main_recipe
Classes:
Name | Description |
---|---|
MainRecipe |
Main class for DSCIM execution. |
dscim.menu.main_recipe.MainRecipe
Bases: StackedDamages
, ABC
Main class for DSCIM execution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
discounting_type
|
str
|
Choice of discounting: |
None
|
discrete_discounting
|
Discounting is discrete if |
False
|
|
fit_type
|
str
|
Type of damage function estimation: |
'ols'
|
weitzman_parameter
|
If <= 1: The share of global consumption below which bottom coding is implemented. If > 1: Absolute dollar value of global consumption below which bottom. Default is [0.1, 0.5]. coding is implemented. |
None
|
|
fair_aggregation
|
list of str or None
|
How to value climate uncertainty from FAIR: |
None
|
rho
|
float
|
Pure rate of time preference parameter |
0.00461878399
|
fair_dims
|
list of str or None
|
List of dimensions over which the FAIR CE/mean/median options should be collapsed. Default value is ["simulation"], but lists such as ["simulation", "rcp", "ssp"] can be passed. Note: If dimensions other than 'simulation' are passed, 'median_params' fair aggregation cannot be passed. |
None
|
Methods:
Name | Description |
---|---|
calculate_discount_factors |
Calculates the stream of discount factors based on the Euler equation that defines an optimal |
calculate_scc |
Calculate range of FAIR-aggregated SCCs |
calculate_stream_discount_factors |
Stream of discount factors |
calculated_damages |
Calculate damages (difference between CEs) for collapsing |
ce |
Rechunk data appropriately and apply the certainty equivalence |
ce_cc_calculation |
Calculate CE damages depending on discount type |
ce_no_cc_calculation |
Calculate GDP CE depending on discount type. |
collapsed_pop |
Collapse population according to discount type. |
damage_function |
Calls damage function calculation method. |
damage_function_calculation |
The damage function model fit may be : (1) ssp specific, (2) ssp-model specific, (3) unique across ssp-model. |
damage_function_points |
Global damages by RCP/GCM or SLR |
discounted_damages |
Discount marginal damages. Distinguishes between constant discount rates method and non-constant discount rates. |
full_uncertainty_iqr |
Calculate the distribution of quantile-weighted SCCs produced from |
global_consumption |
Global consumption without climate change |
global_consumption_calculation |
Calculation of global consumption without climate change |
global_consumption_no_pulse |
Global consumption under FAIR control scenario. |
global_consumption_per_capita |
Global consumption per capita |
global_consumption_pulse |
Global consumption under FAIR pulse scenario. |
global_damages_calculation |
Calculate global collapsed damages for a desired discount type |
marginal_damages |
Marginal damages due to additional pulse |
order_plate |
Execute menu option section and save results |
order_scc |
Execute menu option section and save results |
stat_uncertainty_iqr |
Calculate the distribution of quantile-weighted SCCs produced from |
uncollapsed_sccs |
Calculate full distribution of SCCs without FAIR aggregation |
weitzman_min |
Implements bottom coding that fixes marginal utility below a threshold |
Attributes:
Name | Type | Description |
---|---|---|
ce_cc |
Certainty equivalent of consumption with climate change damages |
|
ce_fair_no_pulse |
Certainty equivalent of global consumption under FAIR control scenario |
|
ce_fair_pulse |
Certainty equivalent of global consumption under FAIR pulse scenario |
|
ce_no_cc |
Certainty equivalent of consumption without climate change damages |
|
damage_function_coefficients |
Dataset
|
Load damage function coefficients if the coefficients are provided by the user. |
damage_function_fit |
Dataset
|
Load fitted damage function if the fit is provided by the user. |
gmsl_max |
This function finds the GMSL value at which the damage function |
|
median_params_marginal_damages |
Calculate marginal damages due to a pulse using a FAIR simulation |
|
output_attrs |
Return dict with class attributes for output metadata |
Source code in src/dscim/menu/main_recipe.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 |
|
dscim.menu.main_recipe.MainRecipe.ce_cc
property
ce_cc
Certainty equivalent of consumption with climate change damages
dscim.menu.main_recipe.MainRecipe.ce_fair_no_pulse
property
ce_fair_no_pulse
Certainty equivalent of global consumption under FAIR control scenario
dscim.menu.main_recipe.MainRecipe.ce_fair_pulse
property
ce_fair_pulse
Certainty equivalent of global consumption under FAIR pulse scenario
dscim.menu.main_recipe.MainRecipe.ce_no_cc
property
ce_no_cc
Certainty equivalent of consumption without climate change damages
dscim.menu.main_recipe.MainRecipe.damage_function_coefficients
property
damage_function_coefficients
Load damage function coefficients if the coefficients are provided by the user. Otherwise, compute them.
dscim.menu.main_recipe.MainRecipe.damage_function_fit
property
damage_function_fit
Load fitted damage function if the fit is provided by the user. Otherwise, compute them.
dscim.menu.main_recipe.MainRecipe.gmsl_max
property
gmsl_max
This function finds the GMSL value at which the damage function reaches its local maximum along the GMSL dimension.
Returns:
Type | Description |
---|---|
DataArray
|
the array of GMSL values at which the local maximum is located, for all years, ssps, models, and if applicable, values of GMST |
dscim.menu.main_recipe.MainRecipe.median_params_marginal_damages
property
median_params_marginal_damages
Calculate marginal damages due to a pulse using a FAIR simulation calculated with the median climate parameters.
dscim.menu.main_recipe.MainRecipe.output_attrs
property
output_attrs
Return dict with class attributes for output metadata
Returns:
Type | Description |
---|---|
A dict Class metadata
|
|
dscim.menu.main_recipe.MainRecipe.calculate_discount_factors
calculate_discount_factors(cons_pc)
Calculates the stream of discount factors based on the Euler equation that defines an optimal intertemporal consumption allocation. Rearranging that equation shows that an outcome that will occur at the period t will be converted into today's, period 0 value, the following way :
Discrete discounting: discount_factor_t = [ 1/(1+rho)^t ] * [ U'(C(t)) / U'(C(0)) ]
where rho is the pure rate of time preference, U() is the utility function, U'() the first derivative, C(0) and C(t) today's and the future consumption respectively. The higher rho, the higher the importance of the present relative to the future so the lower the discount factor, and, if the utility function is concave, the higher the growth of consumption, the lower the importance of the future consumption relative to today, and therefore again the lower the discount factor.
Using a CRRA utility function and plugging the first derivative :
discount_factor_t = [ 1/(1+rho)^t ] * [ C(0)^eta / C(t)^eta ]
eta represents the degree of concavity of the utility function.
With continuous discounting, discount_factor_t = Product_1^t [e^-(rho + eta * g), where g = ln(C(t)/C(t-1))
rearranging yields rho_continuous = e^rho_discrete - 1
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cons_pc
|
array
|
Array of per capita consumption from pulse year to end of time period. |
required |
Returns:
Type | Description |
---|---|
`xarray.DataArray` with discount factors computed following the last equation in the above description.
|
|
Source code in src/dscim/menu/main_recipe.py
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 |
|
dscim.menu.main_recipe.MainRecipe.calculate_scc
calculate_scc()
Calculate range of FAIR-aggregated SCCs
Source code in src/dscim/menu/main_recipe.py
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 |
|
dscim.menu.main_recipe.MainRecipe.calculate_stream_discount_factors
calculate_stream_discount_factors(discounting_type, fair_aggregation)
Stream of discount factors Returns specified Ramsey or Weitzman-Ramsey discount factors.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
discounting_type
|
str
|
Type of discounting to implement. Typically, self.discounting_type is passed. However, for local Euler rates, this changes depending on the option. |
required |
Returns:
Type | Description |
---|---|
`xarray.DataArray`
|
Discount rates indexed by year and (if Ramsey) SSP/model |
Source code in src/dscim/menu/main_recipe.py
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 |
|
dscim.menu.main_recipe.MainRecipe.calculated_damages
abstractmethod
calculated_damages()
Calculate damages (difference between CEs) for collapsing
Source code in src/dscim/menu/main_recipe.py
460 461 462 |
|
dscim.menu.main_recipe.MainRecipe.ce
ce(obj, dims)
Rechunk data appropriately and apply the certainty equivalence calculation. This is done in a loop to avoid memory crashes. Not that data MUST be chunked, otherwise Dask will take a CE over each chunk and sum the result.
*** IMPORTANT NOTE ***
This wrapper function CANNOT execute with weights as it uses a map_blocks
function which is unable to determine how to match weight dimensions with
its chunk. If you must weight, c_equivalence
function must be used directly
on the data.
Source code in src/dscim/menu/main_recipe.py
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 |
|
dscim.menu.main_recipe.MainRecipe.ce_cc_calculation
abstractmethod
ce_cc_calculation()
Calculate CE damages depending on discount type
Source code in src/dscim/menu/main_recipe.py
452 453 454 |
|
dscim.menu.main_recipe.MainRecipe.ce_no_cc_calculation
abstractmethod
ce_no_cc_calculation()
Calculate GDP CE depending on discount type.
Source code in src/dscim/menu/main_recipe.py
456 457 458 |
|
dscim.menu.main_recipe.MainRecipe.collapsed_pop
collapsed_pop()
Collapse population according to discount type.
Source code in src/dscim/menu/main_recipe.py
441 442 443 444 445 446 447 448 449 450 |
|
dscim.menu.main_recipe.MainRecipe.damage_function
damage_function()
Calls damage function calculation method.
This function calls the damage function calculation in
model_outputs(). It calculates a damage function for each
passed scenario_dimension
based on subsets of
self.damage_function_points and extrapolates this function
using the specified method for all years post-end_ext_subset_year.
Returns:
Type | Description |
---|---|
dict
|
dict['params'] is a dataframe of betas for each year dict['preds'] is a dataframe of predicted y hat for each year and anomaly |
Source code in src/dscim/menu/main_recipe.py
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
|
dscim.menu.main_recipe.MainRecipe.damage_function_calculation
damage_function_calculation(damage_function_points, global_consumption)
The damage function model fit may be : (1) ssp specific, (2) ssp-model specific, (3) unique across ssp-model. This depends on the type of discounting. In each case the input data passed to the fitting functions and the formatting of the returned output is different because dimensions are different. This function handles this and returns the model fit.
Returns:
Type | Description |
---|---|
dict with two xr.Datasets, 'params' (model fit) and 'preds' (predictions from model fit), with dimensions depending
|
|
on self.discounting_type.
|
|
Source code in src/dscim/menu/main_recipe.py
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 |
|
dscim.menu.main_recipe.MainRecipe.damage_function_points
damage_function_points()
Global damages by RCP/GCM or SLR
Returns:
Type | Description |
---|---|
pd.DataFrame
|
|
Source code in src/dscim/menu/main_recipe.py
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
|
dscim.menu.main_recipe.MainRecipe.discounted_damages
discounted_damages(damages, discrate)
Discount marginal damages. Distinguishes between constant discount rates method and non-constant discount rates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
damages
|
DataArray or Dataset
|
Array of damages with a |
required |
discrate
|
str
|
Discounting type. Be aware that the constant rates are class-wide defined. If this str is either 'constant' or 'constant_model_collapsed', the predetermined constant discount rates are used, otherwise, the stream of (non-constant) discount factors from self.stream_discount_factors() is used. |
required |
Returns:
Type | Description |
---|---|
xr.Dataset
|
|
Source code in src/dscim/menu/main_recipe.py
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 |
|
dscim.menu.main_recipe.MainRecipe.full_uncertainty_iqr
full_uncertainty_iqr()
Calculate the distribution of quantile-weighted SCCs produced from quantile regressions.
Source code in src/dscim/menu/main_recipe.py
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 |
|
dscim.menu.main_recipe.MainRecipe.global_consumption
global_consumption()
Global consumption without climate change
Source code in src/dscim/menu/main_recipe.py
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 |
|
dscim.menu.main_recipe.MainRecipe.global_consumption_calculation
abstractmethod
global_consumption_calculation(disc_type)
Calculation of global consumption without climate change
Returns:
Type | Description |
---|---|
xr.DataArray
|
|
Source code in src/dscim/menu/main_recipe.py
782 783 784 785 786 787 788 789 |
|
dscim.menu.main_recipe.MainRecipe.global_consumption_no_pulse
global_consumption_no_pulse()
Global consumption under FAIR control scenario.
Source code in src/dscim/menu/main_recipe.py
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 |
|
dscim.menu.main_recipe.MainRecipe.global_consumption_per_capita
global_consumption_per_capita(disc_type)
Global consumption per capita
Returns:
Type | Description |
---|---|
xr.DataArray
|
|
Source code in src/dscim/menu/main_recipe.py
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 |
|
dscim.menu.main_recipe.MainRecipe.global_consumption_pulse
global_consumption_pulse()
Global consumption under FAIR pulse scenario.
Source code in src/dscim/menu/main_recipe.py
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 |
|
dscim.menu.main_recipe.MainRecipe.global_damages_calculation
abstractmethod
global_damages_calculation()
Calculate global collapsed damages for a desired discount type
Source code in src/dscim/menu/main_recipe.py
464 465 466 |
|
dscim.menu.main_recipe.MainRecipe.marginal_damages
marginal_damages()
Marginal damages due to additional pulse
Source code in src/dscim/menu/main_recipe.py
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 |
|
dscim.menu.main_recipe.MainRecipe.order_plate
order_plate(course)
Execute menu option section and save results
This method is a entry point to the class and allows the user to
calculate different elements of a specific menu option. These elements
will automatically be saved in the path defined in save_path
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
course
|
Output to be calculated. Options are:
- |
required |
Returns:
Type | Description |
---|---|
None. Saved all elements to `save_path`
|
|
Source code in src/dscim/menu/main_recipe.py
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
|
dscim.menu.main_recipe.MainRecipe.order_scc
order_scc()
Execute menu option section and save results
This method is a wrapper to order_plate
that calls the "scc" course,
which is the Social Cost of Carbon calculation. Elements involved in the calculation
(fair
and damage_function
) will automatically be saved in the path
defined in save_path
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
None
|
|
required |
Returns:
Type | Description |
---|---|
xr.Dataset of SCCs
|
|
Source code in src/dscim/menu/main_recipe.py
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
|
dscim.menu.main_recipe.MainRecipe.stat_uncertainty_iqr
stat_uncertainty_iqr()
Calculate the distribution of quantile-weighted SCCs produced from quantile regressions that have already been collapsed across other dimensions to give statistical-only uncertainty.
Source code in src/dscim/menu/main_recipe.py
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 |
|
dscim.menu.main_recipe.MainRecipe.uncollapsed_sccs
uncollapsed_sccs()
Calculate full distribution of SCCs without FAIR aggregation
Source code in src/dscim/menu/main_recipe.py
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 |
|
dscim.menu.main_recipe.MainRecipe.weitzman_min
weitzman_min(no_cc_consumption, cc_consumption, parameter)
Implements bottom coding that fixes marginal utility below a threshold to the marginal utility at that threshold. The threshold is the Weitzman parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
no_cc_consumption
|
Consumption array of which the share will be used to calculate the absolute Weitzman parameter, only if parameter <= 1. |
required | |
consumption
|
Consumption array to be bottom-coded. |
required | |
parameter
|
A positive number representing the Weitzman parameter, below which marginal utility will be top coded; ie., 0.01 implies marginal utility is top coded to the value of marginal utility at 1% of no-climate change global consumption. If parameter > 1, it is assumed to be an absolute value. If parameter <= 1, it is assumed to be a share of future global consumption (without climate change). |
required |
Returns:
Type | Description |
---|---|
xr.Dataset
|
|
Source code in src/dscim/menu/main_recipe.py
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 |
|