Skip to content

equity

Classes:

Name Description
EquityRecipe

Equity option

dscim.menu.equity.EquityRecipe

Bases: MainRecipe

Equity option

Methods:

Name Description
risk_aversion_growth_rates

Calculate risk aversion global consumption growth rates

Source code in src/dscim/menu/equity.py
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
class EquityRecipe(MainRecipe):
    """Equity option"""

    NAME = "equity"
    __doc__ = MainRecipe.__doc__

    def ce_cc_calculation(self) -> xr.DataArray:
        if "gwr" in self.discounting_type:
            dims = ["ssp", "model", "region"]
        else:
            dims = ["region"]

        ce_cc = self.risk_aversion_damages("cc").cc

        # reindex to make sure all regions are being calculated
        if len(ce_cc.region.values) < len(self.gdppc.region.values):
            ce_cc = ce_cc.reindex({"region": self.gdppc.region.values})
            # assign zero damages to places with missing damages
            ce_cc = xr.where(np.isnan(ce_cc), self.gdppc, ce_cc)

        ce_array = c_equivalence(
            ce_cc,
            dims=dims,
            weights=self.pop,
            eta=self.eta,
        )

        return ce_array.rename("cc")

    def ce_no_cc_calculation(self) -> xr.DataArray:
        if "gwr" in self.discounting_type:
            dims = ["ssp", "model", "region"]
        else:
            dims = ["region"]

        ce_no_cc = self.risk_aversion_damages("no_cc").no_cc
        # reindex to make sure all regions are being calculated
        if len(ce_no_cc.region.values) < len(self.gdppc.region.values):
            ce_no_cc = ce_no_cc.reindex({"region": self.gdppc.region.values})
            # assign zero damages to places with missing damages
            ce_no_cc = xr.where(np.isnan(ce_no_cc), self.gdppc, ce_no_cc)

        ce_no_cc_array = c_equivalence(
            ce_no_cc,
            dims=dims,
            weights=self.pop,
            eta=self.eta,
        )

        return ce_no_cc_array.rename("no_cc")

    @property
    def calculated_damages(self) -> xr.DataArray:
        return self.ce_no_cc - self.ce_cc

    def global_damages_calculation(self) -> pd.DataFrame:
        dams_collapse = self.calculated_damages * self.collapsed_pop.sum(dim="region")
        df = dams_collapse.to_dataframe("damages").reset_index()

        if "gwr" in self.discounting_type:
            df = df.assign(
                ssp=str(list(self.gdp.ssp.values)),
                model=str(list(self.gdp.model.values)),
            )

        return df

    def global_consumption_calculation(self, disc_type):
        # get global consumption certainty equivalent across regions
        ce_cons = c_equivalence(
            self.gdppc,
            dims="region",
            weights=self.pop,
            eta=self.eta,
        )

        if disc_type == "constant_model_collapsed":
            global_cons_no_cc = (ce_cons * self.pop.sum("region")).mean("model")
        elif (disc_type == "constant") | ("ramsey" in disc_type):
            global_cons_no_cc = ce_cons * self.pop.sum("region")
        elif "gwr" in disc_type:
            global_cons_no_cc = self.ce(
                ce_cons, dims=["ssp", "model"]
            ) * self.collapsed_pop.sum("region")

        # Convert to array in case xarray became temperamental
        # @TODO: remove this line
        # if isinstance(global_cons_no_cc, xr.Dataset):
        #     global_cons_no_cc = global_cons_no_cc.to_array()

        global_cons_no_cc.name = f"global_cons_{disc_type}"

        return global_cons_no_cc

    def risk_aversion_growth_rates(self):
        """Calculate risk aversion global consumption growth rates

        This function calculates the risk aversion version of global
        consumption per capita growth rates, in order to cap growth
        the equity recipe to growth in the risk aversion recipe.

        Returns
        -------
            xr.DataArray
        """
        if (self.discounting_type == "constant") or ("ramsey" in self.discounting_type):
            global_cons_no_cc = self.gdp.sum(dim=["region"])

        elif self.discounting_type == "constant_model_collapsed":
            global_cons_no_cc = self.gdp.sum(dim=["region"]).mean(dim=["model"])

        elif "gwr" in self.discounting_type:
            ce_cons = self.ce(self.gdppc, dims=["ssp", "model"])
            global_cons_no_cc = (ce_cons * self.collapsed_pop).sum(dim=["region"])

        # Calculate global consumption per capita
        globalc_pc = global_cons_no_cc / self.collapsed_pop.sum("region")

        # calculate growth rates
        growth_rates = globalc_pc.diff("year") / globalc_pc.shift(year=1)

        return growth_rates

dscim.menu.equity.EquityRecipe.risk_aversion_growth_rates

risk_aversion_growth_rates()

Calculate risk aversion global consumption growth rates

This function calculates the risk aversion version of global consumption per capita growth rates, in order to cap growth the equity recipe to growth in the risk aversion recipe.

Returns:

Type Description
xr.DataArray
Source code in src/dscim/menu/equity.py
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
def risk_aversion_growth_rates(self):
    """Calculate risk aversion global consumption growth rates

    This function calculates the risk aversion version of global
    consumption per capita growth rates, in order to cap growth
    the equity recipe to growth in the risk aversion recipe.

    Returns
    -------
        xr.DataArray
    """
    if (self.discounting_type == "constant") or ("ramsey" in self.discounting_type):
        global_cons_no_cc = self.gdp.sum(dim=["region"])

    elif self.discounting_type == "constant_model_collapsed":
        global_cons_no_cc = self.gdp.sum(dim=["region"]).mean(dim=["model"])

    elif "gwr" in self.discounting_type:
        ce_cons = self.ce(self.gdppc, dims=["ssp", "model"])
        global_cons_no_cc = (ce_cons * self.collapsed_pop).sum(dim=["region"])

    # Calculate global consumption per capita
    globalc_pc = global_cons_no_cc / self.collapsed_pop.sum("region")

    # calculate growth rates
    growth_rates = globalc_pc.diff("year") / globalc_pc.shift(year=1)

    return growth_rates