dodola.cli
Commandline interface to the application.
Modules:
Name | Description |
---|---|
services |
Used by the CLI or any UI to deliver services to our lovely users |
Functions:
Name | Description |
---|---|
adjust_maximum_precipitation |
Apply maximum precipitation threshold to a dataset |
apply_dtr_floor |
Apply a floor to diurnal temperature range (DTR) in a dataset |
apply_non_polar_dtr_ceiling |
Apply a ceiling to diurnal temperature range (DTR) in a dataset |
apply_qdm |
Adjust simulation years with QDM bias-adjustment method, outputting Zarr Store |
apply_qplad |
Adjust simulation with QPLAD downscaling method, outputting Zarr Store |
cleancmip6 |
Clean and standardize CMIP6 GCM to 'out'. If drop-leapdays option is set, remove leap days |
correct_wetday_frequency |
Correct wet day frequency in a dataset |
dodola_cli |
GCM bias adjustment and downscaling |
get_attrs |
Get JSON str of data attrs metadata. |
prime_qdm_output_zarrstore |
Initialize a Zarr Store for writing QDM output regionally in independent processes |
prime_qplad_output_zarrstore |
Initialize a Zarr Store for writing QPLAD output regionally in independent processes |
rechunk |
Rechunk Zarr store |
regrid |
Regrid a target climate dataset |
removeleapdays |
Remove leap days and update calendar attribute |
train_qdm |
Train Quantile Delta Mapping (QDM) model and output to storage |
train_qplad |
Train Quantile-Preserving, Localized Analogs Downscaling (QPLAD) model and output to storage |
validate_dataset |
Validate a dataset |
dodola.cli.adjust_maximum_precipitation
adjust_maximum_precipitation(x, out, threshold=3000.0)
Apply maximum precipitation threshold to a dataset
Source code in dodola/cli.py
568 569 570 571 572 573 574 575 576 577 578 |
|
dodola.cli.apply_dtr_floor
apply_dtr_floor(x, out, floor=1.0)
Apply a floor to diurnal temperature range (DTR) in a dataset
Source code in dodola/cli.py
581 582 583 584 585 586 587 588 589 |
|
dodola.cli.apply_non_polar_dtr_ceiling
apply_non_polar_dtr_ceiling(x, out, ceiling=70.0)
Apply a ceiling to diurnal temperature range (DTR) in a dataset
Source code in dodola/cli.py
592 593 594 595 596 597 598 599 600 |
|
dodola.cli.apply_qdm
apply_qdm(simulation, qdm, years, variable, out, selslice=None, iselslice=None, out_zarr_region=None, root_attrs_json_file=None, new_attrs=None)
Adjust simulation years with QDM bias-adjustment method, outputting Zarr Store
Source code in dodola/cli.py
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
|
dodola.cli.apply_qplad
apply_qplad(simulation, qplad, variable, out, selslice=None, iselslice=None, out_zarr_region=None, root_attrs_json_file=None, new_attrs=None, wetday_post_correction=False)
Adjust simulation with QPLAD downscaling method, outputting Zarr Store
Source code in dodola/cli.py
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
|
dodola.cli.cleancmip6
cleancmip6(x, out, drop_leapdays)
Clean and standardize CMIP6 GCM to 'out'. If drop-leapdays option is set, remove leap days
Source code in dodola/cli.py
467 468 469 470 471 472 473 474 475 476 477 |
|
dodola.cli.correct_wetday_frequency
correct_wetday_frequency(x, out, process)
Correct wet day frequency in a dataset
Source code in dodola/cli.py
553 554 555 556 557 558 559 560 561 562 563 564 565 |
|
dodola.cli.dodola_cli
dodola_cli(debug)
GCM bias adjustment and downscaling
Authenticate with storage by setting the appropriate environment variables for your fsspec-compatible URL library.
Source code in dodola/cli.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
|
dodola.cli.get_attrs
get_attrs(x, variable=None)
Get JSON str of data attrs metadata.
Source code in dodola/cli.py
488 489 490 491 492 493 |
|
dodola.cli.prime_qdm_output_zarrstore
prime_qdm_output_zarrstore(simulation, variable, years, out, zarr_region_dims=None, root_attrs_json_file=None, new_attrs=None)
Initialize a Zarr Store for writing QDM output regionally in independent processes
Source code in dodola/cli.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
|
dodola.cli.prime_qplad_output_zarrstore
prime_qplad_output_zarrstore(simulation, variable, out, zarr_region_dims=None, root_attrs_json_file=None, new_attrs=None)
Initialize a Zarr Store for writing QPLAD output regionally in independent processes
Source code in dodola/cli.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
|
dodola.cli.rechunk
rechunk(x, chunk, out)
Rechunk Zarr store
Source code in dodola/cli.py
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
|
dodola.cli.regrid
regrid(x, out, method, domain_file, weightspath, astype, cyclic)
Regrid a target climate dataset
Note, the weightspath only accepts paths to NetCDF files on the local disk. See
https://xesmf.readthedocs.io/ for details on requirements for x
with
different methods.
Source code in dodola/cli.py
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
|
dodola.cli.removeleapdays
removeleapdays(x, out)
Remove leap days and update calendar attribute
Source code in dodola/cli.py
480 481 482 483 484 485 |
|
dodola.cli.train_qdm
train_qdm(historical, reference, out, variable, kind, selslice=None, iselslice=None)
Train Quantile Delta Mapping (QDM) model and output to storage
Source code in dodola/cli.py
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
|
dodola.cli.train_qplad
train_qplad(coarse_reference, fine_reference, out, variable, kind, selslice=None, iselslice=None)
Train Quantile-Preserving, Localized Analogs Downscaling (QPLAD) model and output to storage
Source code in dodola/cli.py
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
|
dodola.cli.validate_dataset
validate_dataset(x, variable, data_type, time_period)
Validate a dataset
Source code in dodola/cli.py
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 |
|